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Abstract Theoretical analysis of the hydrodynamic and transport characteristics at the entry region of free 
surface films is presented. The governing equations for mass continuity, liquid motion and heat transfer 
across the film are newly formulated in terms of the (usually measurable) parameters at the interface, by 
applying the latter as a so-called collocation line. Inertia terms are retained as required in problems 
associated with rapid disturbances. A time-dependent disturbance is applied at the entry and the effects ofits 
propagation on the film- and transfer-characteristics down-stream are evaluated and discussed. 

The collocation forms of the governing equations might be of an interest for further film analyses. 
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distance from free interface [m] ; 
rate parameter (or frequencyofdisturbance 

at x = 0) [l/s]; 
Fourier number; 
gravitation component in x direction 

[m/s’] ; 
film thickness [ml; 
normalized film thickness; 

final film thickness; 
Nusselt film thickness [ml; 
heat conductivity [W/m’(K/m); 
liquid heat of vaporization [h/kg] ; 
pressure (p’ = p - pyxx) [N/m’]; 
local volumetric flow rate; 
wall heat flux [W/m’]; 
normalized wall-heat flux ; 
average normalized wall-heat flux with 
respect to distance; 
average normalized wall-heat flux with 

respect to distance and time; 
Reynolds number; 
film surface velocity [m/s] ; 
normalized film surface velocity; 
time [2] ; 
temperature [K]; 
wall temperature [K] ; 
film free interface temperature [K] ; 
velocity in the x direction [m/s] ; 
velocity in the y direction [m/s] ; 
Weber number; 
normalized distance in the x direction; 
maximum distance that the disturbance 
advanced at time TV. 
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SOMENCLATURE Greek symbols 

01, thermal diffusivity [m’/s] ; 

Y. local mass flow rate [kg/sm]; 

Yi9 inlet mass flow rate [kg/sm] ; 
r, normalized mass flow rate; 

8 
0;. 

temperature drop (T - T,) [K] ; 
normalized 0, ; 

4 Pohlausen’s parameter; 

K viscosity [ NS,/m’] ; 
V, kinematic viscosity [m’!s] ; 

P. density [kgjm3]; 

0. surface tension [Njm] ; 
5, normalized time; 

sF, normalized time for reaching H, at X = 0; 

r, stress tensor [N/m’] ; 
*3 stream function [m’!s]. 

1. ISTRODUCTlON 

FLUID motion and transport in thin free-surface liquid 

films are of fundamental interest in much basic in- 
dustrial equipment, e.g. in steam condensers, wetted 
wall columns, liquid-film evaporators and other pro- 
cesses involving interfacial heat and mass transfer. Of 

particular interest are the horizontal type 

evaporator- condenser systems [ 1,2], where either the 
liquid condensate or the evaporating film flows be- 
tween vertically neighbouring tubes by means of 
falling droplets, which detach at the bottom of one 
tube and ‘rain’ on the top of the tube below. Thin films 
are thus sustained by successive drops and at the time- 
interval between two consecutive drops, the liquid 
drains downward [3]. 

Due to this kind ofconstantly undeveloped flow, the 
film characteristics and the transfer rates are complex 
periodical functions of time. Obviously, the film char- 
acteristics (thickness of that layer which remains on 
the surface and its drainage velocity) as well as the 

transport characteristics are influenced most at the 
under-developed region which follows the initial 
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boundary where the dripping, and hence the change of 
feeding rate, occurs. The contribution of this under- 

developed entry region is of practical importance in 
cases where the transfer areas are relatively short. For 
instance, the film-drainage path on a horizontal-tube 
bundle comprises consecutive sections each being half 
of the conduit periphery. 

Heat, mass and momentum transport for laminar 

confined flows in the entrance region of closed con- 
duits has received comprehensive attention [4&9]. 

However, the entrance region for laminar free-surface 
flows has received relatively little attention. The 
entrance effects on mass-transfer processes in laminar 

free-surface falling liquid films have been accounted for 

by Striven [lo] and Toor [l 11. Laminar flow along a 
vertical wall has been analysed by Hassan [12], 
utilizing the integral equation of momentum and has 

been improved later on by Haugen [13] assuming a 

developing boundary layer at the entrance. Direct 
integration of the governing differential equation (by 

using finite difference methods) has been presented by 
Bruley [ 141. Fyrther numerical solutions of the equa- 

tion of motion in the entrance region have been 

reported by Cerro and Whitaker [15]. In all the above 

studies, the effect of viscous drag at the interface has 
been neglected. This has been accounted for later by 

Murty and Saster [16]. 
The present study represents a theoretical analysis 

of the unsteady hydrodynamic and transport charac- 
teristics in thin films. Particular emphasis is made on 

the effect of a time-dependent disturbance applied at 

the entry region and its propagation downstream. For 
instance, reduction of film thickness, velocity or feed 

flow rate at the entry in a step-change mode or as a 

function of time. 
The equations of continuity. motion and energy for 

free-interface thin films are first formulated in terms of 
the free liquid-interface parameters by applying the 
latter as a collocation line. The collocation equations 

obtained are simultaneously solved for the instan- 
taneous film thickness, velocity at its interface and the 

associated transfer rates, using Lax- Wendroff numeri- 
cal schemes. 

2. ‘THE PHYSICAL MODEL 

A schematic description of the physical model and 

coordinates are illustrated in Fig. 1. An initially plane 
laminar film flows down a vertical wall emerging at s 
= 0. The feed rate at x = 0 is uniformly distributed in 
the z direction at the times t = 0 and it rates at yi per 
unit width of the wall. However, for t > 0 the film-feed 
flow rate is changed in either a stepwise or time- 
dependent manner. Note that a zero gas-liquid shear 
is assumed at the film free interface, denoted here by h 

(x, 1). 
The thermal conditions are defined by either a 

constant wall temperature, T,, at the surface )‘ = 0, or 
a constant heat flux, qw normal to this place. The liquid 
feed is distributed at an inlet temperature, T, and it is 
assumed that the temperature at the film free interface 

Y = Y, (1) 

H: I--c 

FE. 1. Schematic description of physical model. 

is maintained constantly at T, (corresponding to a 
constant saturation pressure p,). 

2.1. The conditions at the gas-liquid inter&e 
With reference to Fig. 1 the geometry of the 

gas-liquid interface is given by the normal and 

tangential unit vectors : 

n = (-h,, l)!]Vdl. (la) 

t= (l,h,)ilVdj, (lb) 

where subscript x denotes derivation in the x direction 
and d denotes the distance from the free interface given 
by: 

d(x,y,t) = .I; - h(x,t); IVrij = (I + h$)* ‘. (2) 

Assuming now two dimensional flow (uniformity in 
the z direction) and utilizing boundary-layer approxi- 
mations the film stress tensor is: 

where p is the pressure and $(x,J, t) is a stream 

function (defined by u = a+/ay and c = -(?ij~/;x). 
Utilizing equations (la) and (lb), the stress vector at 
the gas-liquid interface is : 
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whereby the normal and tangential component to the 
interface are : 

J,=(F.?i).ri= -p+& 
x 

1 a211, 
axay 

h 9+h2* 
Xay2 II “axay y=h’ (54 

i - h,2 aZ* f;=(F.$.t=p-_ z 
i + h: ay y=h 

Wx a** --- 
I + h: axay y=h. (5b) 

Following the boundary-layer approximation, all 
terms of a2$/axay may be neglected and equations (5) 
reduce to 

+p_$cJ (64 
x y=h’ 

f;=fi 
i - hf a2* 
iTq- ay2 y=k’ (6’4 

2.2. The governing equations of motion 
The simplified Navier-Stokes equations (known as 

Prandtl’s boundary-layer equations) for two- 
dimensional non-steady flow in the x - y plane are: 

(7) 

!%+a”=O. 
ax ay 

As it is often convenient, the stream function is 
introduced, so that the continuity equation (8), is 
satisfied automatically, and in addtion, the equation of 
momentum is transformed into a single-unknown 
third order partial-differential equation. 

al* a$ a*+ a* av i apt a3* --- 
atdy + 3 axay ax ay2=---+vay3; 

P ax 

P’ = P - pgxx. (9) 

Differentiation of equation (9) with respect toy results 
in the vorticity equation : 

a* a a2* a”$ - -- 
axayay’=“ay”. c > 

(10) 

The prescribed stream function $ (x, y, t) is expanded 
now at (x, t) into six powers of y, with coefficients a, 
(x. t) which are functions of x and t, the expansion 
being : 

where 1, Pohlhausen’s parameter, is given by equation 
(11~). However, since the external pressure P, is 
constant, the pressure gradient dP/dx across the film is 
equal dJJdx. The latter is evaluated by differentiating 
equation (1 lg). 

The equation of motion (9), applied at the line y = h 
(so-called collocation line), now reads : 

$(x,y,t) = a,+a,y + a2y2-ta3y3+aty4+aSy5. 

as as 6 
12’ ’ z+sz=59- 7 p+- - - ; ; ;x[(l+h;+]’ 

(13) 

Some of the coefficients can be selected in accordance Note that s is the local velocity at the film interface in 
with the appropriate boundary conditions, whereas the direction of the main flow. 
the others are connected through conditions of com- Also, the local mass flow rate can be obtained in 

patibility at either the wall or the liquid free surface. In 
terms of the stream function, the boundary and 
compatibility conditions are : 

y=o; Lo 

ay 

a, =O, (1 la) 

y=o; $=O a, = 0, (lib) 

y=o; l dp’ a”+ 1 dp’ . 
pdx=5j7 a3 =G dx = -A, (1lC) 

y=h; a”i=, ay a4 + 5a,h = 0, (lid) 

y=h; a2*=0 
27 

a 2 - 31h + 6a,h2 + 10a,h3 = 0, (lle) 

ati 
y=h; JY=” 

2a2h - 31h2 + 4a4h3 + 5a,h4 = s, (llf) 

y=h; 
a2h/aX2 

pu = ’ El + (ah/aX)2]3/2 -It; 

P, = const. (llg) 

The first two conditions at the wall are due to the 
absence of fluid slip and an impermeable solid surface. 
These two combined with the momentum equation (9) 
result in a third relationshipat the wall. Equation (1 le) 
is a compatibility condition which results from equa- 
tion (6b) for the case of no tangential shear stress at the 
free interface. The fourth relationship is again a 
compatibility condition which expresses the complete 
time derivative of the vorticity, moving with a fluid 
particle along the free-interface streamline. This ex- 
pression follows from condition (1 le). 

Finally, equation (1 If) implies that a new parameter 
s is introduced, in terms of which all other coefficients 
are related. Thus, the solutions of equations (11) yield : 

a2 = (4s + 3ih2)/5h, 

a4 = - (s - 3ih2)/5h3, 

a5 = (s - 31h2)/25h4, 

(12) 
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terms of s by integrating the velocity profile over the equation (12). This results in a H,,, (or q,) equation in 
film thickness, thus : terms of the film thickness and the velocity at the free 

interface : 

(14) 

2.3. The energy equation 

Substituting the stream function components, equa- 
tions (3) into the two-dimensional energy equations 
and differentiating with respect to y yields: 

and the various coefficients are determined, based on 
boundary and compatibility conditions. These are: 

J’ = 0, T = T,., (I(=) 

J‘ = 0, ‘T = -q,/k, 
(?, (16b) 

(16~) 

!’ = h, T = T,, (Ibe) 

(16f) 

Note that conditions (16~) and (16d) are obtained 

from the energy equation and its differentiated form, 
equation (15) at the wall. The last condition results 
since the free interface is a stream line whereupon the 
complete time derivation is zero. Applying the re- 
lationships (16a)-( 16d) and (16f) on the temperature 
power series yields the coefficients in terms of the 

temperature and thermal flux at the wall: 

(1X) 

If a constant temperature, T’, IS maintained at the 
solid-film interface, equation (12) reduces to : 

However, for the case of a constant heat flux, q,. at the 

wall, equation (18) reduces to : 

The film-free interface is described by [x, h(x, t)] and 
the time derivatives of these coordinates [O,ah/dt]. 
Similarly, the interface motion is described by a vector 
[s, - ?$/?x], while the normal component to the film 
interface, E, is given by equations (1) and (2). More- 

over, if there exists a heat flux. qhr at the free interface, 

evaporation occurs at an amount ofq,/pl. where 1 is the 
liquid heat of vaporization. Therefore, the normal 

interface motion due to evaporation q,fi/pl must be 
subtraced from the interface motion in the normal 
direction. The continuity condition at the free interface 

is, thus: 

Ii = [S, -?$.:‘?x],ri - (21) 

The flux vector at the interface is obtained from the 

temperature-gradient vector at this line. Utilizing the 
temperature constants, equation (17) in q, = 

Also from equations (I 1) and (12) one obtains: 

where 0, = T, - T,. 6 i/l 
^I 

The remaining relationship, equation (16d) is now 
treated whereby the LHS is evaluated utilizing the 

+ 25 
i/l’ 

?u 
+ 2;h3;y;. (23) 

power series of T (or 0) with equatron (17) whereas its Combining equations (22) and (23) into equation (21), 

RHS is evaluated from the power series of II, with the latter becomes: 
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-dh& a= h/ax= 

7sP ax2 > [i + (dhiaX)2J3’2 ’ (24) 

It is worth noting that equation (24) can easily be 
switched to an equivalent integral continuity form by 
utilizing equation (14). Differentiating the latter and 
substituting in equation (24) yields 

ah i ay 

at+x= 

2k0, kh 80, 

- qw--h-Ec I >’ 
Pi. (25) 

Obviously, if the heat-transfer resistance lies in a 
sublayer thinner than the liquid film no evaporation 
will occur, i.e. q&p1 and equation (25) reduces to: 

h+‘!Lo 
at p ax ’ (26) 

which is the usual continuity equation. 
The equation of motion, equation (13) with the 

continuity equation (25) or (26) determine the film 
hydrodynamic behaviour. When thermal-boundary 
conditions are applied, these must be solved with 
temperature equation (18). The latter may be replaced 
by either equation (19) or (20) for cases of constant 
temperature and constant heat flux at the wall, 
respectively. 

2.4. The normalized governing equations 

The governing equations are now normalized utiliz- 
ing the following non-dimensional variables : 

s = sl0.y; H = hjhN; I- = V(pu.vhi+) 

x = x/L; T = t/(L/O,); L = hN( We)“’ 

Re = DNhN; we _ 9av2 ; o,=vi=& 
V Pg=h; hN 3v 

QN = q&N ; 0, = e,l(q,h,lk); F, v, 
N 

(27) 

where Re. W, and F0 are the Reynolds, Weber and 
Fourier numbers, respectively, and h,, ii,., are the film 
thickness and the average velocity, respectively, of a 
laminar smooth Nusseh film, corresponding to initial 
feed-flow rate, yt. Similarly, qN is the heat flux which 
would result for constant wall temperature, 0, = T, 
- T,,, under the Nusselt assumption of a linear 
temperature profile across the film of thickness hN. 
Thus qN = k(T, - T,)h,, is used in normalizing 
equation (19). 00 the other hand, for constant heat 
flux q, at the wall, equation (20) is normal&d by the 
temperature gradient, @N which would result across a 
Nusselt film, hN by applying q, (i.e. @N = q,h,/k). 

Note also that the characteristic length L is a wave 
length in the neighbourhood of the most amplified 
wave. The preference of normalizing x by L rather than 
h, is explained below. Equations (13), (19X (20) and 
(25) in nondimensionalized form are, respectively: 

’ (13’) 

1 Re =d 

- Zs (We)“= H dX 
a=H/dX= 1 ao v 

[i + (aH/aX)2/We]3’2 ax ’ 
(20’) 

dH al- 
Yg+ax=o. 

The dimensionless local flow rate is, by equation (14) : 

T=;SH+$H3+L 
Re a 

-izH3E 75 (We) 

2 

[I + (;$;;,we]312 ’ (14’) 

3. METHOD OF SOLUTION 

To solve equations (13’), (19’). (20’) and (25’) we first 
neglect the surface-tension effect (terms including the 
third derivative of H with respect to X are dropped). 
Substituting equation (14’) in (25’), the following set of 
equations is obtained. 

(13*) 

dH 16 aH 16 dS 
r+-S-+-H-++H2~=0, 

25 dX 25 8X 25 (25*) 

(19’) 

(20*) 

The first two equations are first solved simul- 
taneously; the other two can be solved using the 
solution of S and H. 

The first two equations are a set of non-linear 
hyperbolic partial-differential equations having the 
form 
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This system is hyperbolic system with real 
eigenvalues 

I 
&$+&Hz 

1 

The initial conditions used are: 

7 = 0, X > 0; H = 1.0, S = 1.5, (28a) 

1 

r ‘ft,’ 
X = 0 ; H = 1 - (1 - H&t, 

S = 1.5H2, (28b) 

1 
5>7, 

ftr 
X=0; H=H,, (28~) 

where H, is the final thickness, t, is a reference time 
constant, f is a rate parameter which determines the 
rate of change of the feed at X = O.t 

No stable numerical solutions have been found yet 
for this system in its present form, but some attempts 
are still underway. A solution for a special case has 
been obtained by dropping the non-homogeneous 
term 

which forms nonlinear coupling between the two 
equations. The neglect of this term is reasonable for 
large values of Re. Also for largefthe final values of r 
and X are small [equation (28b)] and hence the 
contribution of the non-homogeneous term in the 
integration of equation (13th) is small. The solution 
is obtained by first bringing the system to a con- 
servation form as follows. 

_ 

- 

and 

Sl” = 0.5s; - 
s2 n+1.‘2 

K 1 - 
2 i+l2 

_ (30c) 

Similar expressions for H are obtained from equation 
(29b). 

Simultaneously, other variables and functions are 
calculated, including : wall temperature, 0, ; wall heat 

flux, Q,; mass flow rate, T; average heat flux with 
distance, QA ; average heat flux with distance and time, 

Qaa; etc. 
The temperature at the wall, 0, is calculated from 

equation (20*) using the Lax method and forward 
derivative with distance for increasing stability. 

Q;” = O.S(Q;+r + Q;-r) + Ar(AT - BT) (31) 

where 

and 

B, = 0.04(8 S; + 3Hy2) (O;, , - @:)/Ax 

The heat flux at the wall, Qw is calculated from 
equation (19*) using a simple central derivative 

Q:,;t ‘- Q:, 
A7 

(32) 

where, for H = l/2 (Hy + Hy+ 1) and Qw = l/2 (Q”,i + 

QC,,, $1 yields 

3H 
sz + & (0.64SH + 0.04H3) = 0. - (29b) 

This system is solved numerically using the 
Lax-Wendroff method which is of second order 
accuracy. Intermediate values of the functions (S, H) 
are calculated initially. Then the value of S, H, on the 
next grid point are calculated. 

If n is the time index, i is the distance index such that 
t = nAt and X = iAx where At and Ax are the 
temporal and spatial increments respectively, 

sy:;;; = O.S(SC + ST+ 1) - 0.5 

tfcorresponds e.g. to the drop frequency at x = 0 and l/j% 
the drainage time between successive drops. 

(1 + 6F0A~/H2). (33) 

The heat-transfer coefficient Ii in the case of con- 
stant heat flux is proportional to l/T,. In their 
dimensionless values both CT and T, are initially 1, 
thus 

U = l/T,.. (34) 

RESULTS AND DISCUSSION 

The following parameters have been studied : 
1. ReN number has been varied between 100 and 600. 
2. Final film thickness is chosen at either 0.5 or 0.05 

of its initial value, h,; thus, H, = 0.5 or 0.05. 

3. Frequency factor was varied betweenf = 2.5 and 
20. 
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A typical output of the calculated parameters is 
demonstrated in Fig. 2 for intermediate values of 
Reynolds number and rate parameter, ReN = 400 and 
f = 10. During the time interval, llf, the film thickness 
at the interval point is reduced [according to equation 
(28b)] to half of its initial value. Shortly after the 
change at X = 0 occurs, a relatively steep front, ending 
with H = 1.0 at X = X,, is set in motion in the main 
direction of flow. This liquid front advances with speed 
of approximately 1.5(P), which is the free surface 
velocity corresponding to Nusselt analysis. However, 
the local free liquid surface (Fig. 2b), for the drainage 

a 

100 

R*= 400 

f =I0 

Hf =05 

b 

-0 100 

2.0 

Re,= 400 

f =I0 

0 Hf =05 

OO IO 0 

region, 0 < X < X,, strongly increases with the 
distance downstream (even for this part where the film 
thickness is constant), finally approaching its initial 
value of 1.5 at X -+ X,. Consequently, the local film 
flow rate, Q, varies with X in a somewhat milder 
manner (Fig. 2~). 

The local wall temperature (obtained with constant 
wall flux) and the local flux at the wall (obtained with 
constant wall temperature) are illustrated in Figs. 2d 
and 2e, respectively. For a constant flux at the wall, a 
decrease in the film thickness yields a decrease in the 
local temperature at the wall. On the other hand, for a 

t 

Re, = 400 

f =I0 

Hf’05 

t d 

Dimensionless distance , X 

FIG. 2. Hydrodynamic and transport characteristics for relatively slow disturbance at X = 0 (HF = 0.5). 
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constant wall temperature, the reduction in the film 

thickness brings about an enhanced heat flux at the 

wall. It is thus of a great interest to evaluate the total 

enhancement, Q 4 4 obtained over a distance X at a 
certain time, r. As is shown in Fig. Zf, at time l.:/‘(when 
the film at X =0 reaches half of its initial value) the 

total enhancement in the heat flux is between 25 per 

2( 

S 

c 1 
IO 

I 
OO 

1 
IO0 

2or---&r-_l 

0 

Dtmenstonless dlstonce , X 

FIG. 3. Hydrodynamic and transport characteristics for relatrvely fast disturbance at x = (1 t/f, -= 0 051 

cent at X = 0 and I5 per cent at X = X,. For a shorter 
plate of L < X, the expected enhancement is higher 
than IS per cent. 

The results presented m Fig. 2 correspond to a 

relatively slow variation of the film thickness at X = 0. 
whereby it IS reduced to half of its initial thickness at 
time of I f ( = I: IO). A similar presentation is given in 

d 

OO K 

40 1 

0 
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Fig. 3 for the case of rapidly-diminishing liquid film at 
X = 0, approaching 5 per cent of its initial value at the 
same period of time (l/f= l/10). It is interesting to 
note that due to the relatively thin film associated here 
the effect of the solid wall is to reduce the first liquid 
front near X = X,, while a new one appears at almost 
X - 0. This effect can be seen also in Fig. 2a where the 
steep front obtained closed to X = 0 slopes more and 
more with time. As is to be expected, the large 
variations in the local film thickness and in the velocity 
accordingly, affect the temperature or the heat flux at 
the wall. For instance, at time 7h the heat flux at the 
wall (for constant wall temperature) may be enhanced 

,,l-----l 
72 4 6 6 IO 12 14 

t I 

by some 40 per cent for a plate oflength L = X, and are 
even doubled for shorter plates. 

The various physical variables, S, H, O,, Q,, QA and 

Q AA are compared in Figs. 4-9 for a wide range of each 
of the basic parameters Re,, l/f and HP Note that QA 
represent instantaneous enhancement in the transfer 
rate averaged over the distance X. Since the film 
thickness decreases with time, this enhancement is 
more and more pronounced as the disturbance at X = 
0 propagates downstream. For completeness, the 
averaging of QA over the time elapsed is shown in Fig. 
9. Thus, Qaa represents the overall enhancement at 
time 7F and over a length X. 

20 

S 

0 

~=2 4 6 6 10 12 14 

f ~2.5 

tit -0.5 

s 
-r*90 I60 270 360 450 

0 I( 

Dimensionless distance , X 

D 

00 

FIG. 4. Local and instantaneous variations of the interface velocity s for various operation conditions 
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As indicated in Figs. 4-9. the distance (X,) down- 
stream, which is under the effect of the disturbance 
at X = 0, increases with the Reynolds number and 
decreases with the drainage rate l!f (at X = 0). 
However, the enhancement in the transfer rates re- 
lative to the initial Nusselt values depend on the final 
condition of the film thickness at X = 0, whether H, + 
0.5 or H, ----t 0.05. Clearly the latter yields a greater 
improvement. 

Finally. it is to be noted that the heat-transfer 
coefficient is proportional to Q, in the case ofconstant 

‘“rr.2/ f/f//‘/ 1 

OoL---------J 
250 

I.0 

H 

0 
0 100 

temperature at the wall (since the interface tempera- 
ture. T,. is constant at the saturation value). On the 
other hand, in the case ofconstant heat flux at the wall, 
the heat-transfer coefficient is proportional to l/O,. 

/Wmnvlrdyewwnr The contribution of Mr. Yacoub Na- 
seem in the final refinement of the calculatton scheme is htghly 

appreciated. 

We acknowledge with thanks the linanclal support of the 
Israel National Council for Research and Development 

v i ,’ 

q;_$ /” 
/ 

/ A’ 
// 

4 
Re, = 100 

f 125 

H‘ =005 

l~~*“.~~~J 
OO IO 00 

Dimensionless dlstonce , X 

50 

Ftc;. 5. Local and instantaneous variations of the lilm thrckness, If for various operation conditions 
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Ffe* = loo 
f * IO 
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CARACTERISTIQUES HYDRODYNAMIQUES ET DE TRANSFERT 
DANS DES FILMS LAMINAIRES TOMBANTS A INTERFACE 

LIBRE AVEC TRANSFERT THERMIQUE 

Resum-On presente une etude thtorique des caracteristiques hydrodynamiques et de transport a la region 
initiale des films a surface libre. Les equations de continuitt, du mouvement du liquide, et du transfert 
thermique I travers le film sont formulees de facon nouvelle en fonction des parametres (usuellement 
mesurables) a l’interface en considbant celui-ci comme une ligne de collocation. Des termes d’inertie sont 
conserves comme dans les problemes associes a des perturbations rapides. Une perturbation dtpendante du 
temps est appliquie a l’entree et les effets de sa propagation sur les caracteristiques du film et du transfert en 
aval sont Cvalues et discutb. 

Ces formes collocatives des equations peuvent &tre intiressantes pour des analyses ulterieures des films. 

HYDRODYNAMIK UND TRANSPORTEIGENSCHAFTEN BE1 FILMEN MIT 
FREIER OBERFLACHE BE1 ZEITABHXNGIGEN STGRUNGEN 

AM EINTRITT 

Zusammenfassung-Es werden theoretische Berechnungen der Hydrodynamik und der Transporteigen- 
schaften im Einlautbereich von Filmen mit freier Oberfliiche mitgeteilt. Die Bestimmungsgleichungen fiir 
Massenkontinuitat, Fliissigkeitsbewegung und Wiirmetransport durch den Film werden neu formuliert, und 
zwar mit den (gewdhnlich mel3baren) Parametern an der Grenzflache als unabhiingigen Variablen. Dabei 
wird letztere als sogenannte Kollokationslinie angesetzt. Trlgheitsglieder wurden beriicksichtigt, so wie es 
fur Aufgabenstellungen mit schnellen Stijrungen gefordert wird. Es wird eine zeitabhangige Stijrung am 
Eintritt angesetzt und der Einflul3 ihrer Fortpflanzung auf die Film- und Transporteigenschaften 
stromabwarts abgeschatzt und diskutiert. Die Kollokationsformen der Bestimmungsgleichungen kijnnen 

fiir weitere Filmberechnungen von Interesse sein. 

BJIRtIHHE 3ABMCIIIIIEFO OT BPEMEHM B03MYIIIEHHH BO BXOAHOH OEJIACTR 
HA I-WJ(POJHzfHAMMYECKHE XAPAKTEPHCTMKR I4 TIEPEHOCHLIE CBOtkTBA 

CBOEiOAHOfi I-IJIEHKM HA HOBEPXHOCTW PA3AEJIA 

AnHoTaunn- n~ACTaB~eHTeO~TH'ieCKHfiaHanLf3 rHApOAHHaMW4eCKHXXapaKTepIiCTHKFitIe~HOCHblX 

CBOkTB Ha HaqaJIbHOM yYaCTKe EIJIeHOK CO CB060AHOfi nOBepXHOCTbl0. &HOBHbIe YpaBHeHHn coxpa- 
HeHHIl MaCCbt, KOJlkfYeCTBa LtBHEeHHR XCWKOCTW H IIeptZHOCa TenJla IIOIIepeK IUIeHKH BbImxeHbI Vepe3 

(06b19~0~3h4ep~e~b1e)napa~eTpb1 Ha rpawiue pasAena,npwieM nocneAmm npeAcTaBneHa B Bme TaK 

Ha3MBaeMOii KOJIJIOKaUHOHHOii JIBHUH. B J'paBHeHHKX UepeHOCa COXpaHeHbI MHepUHOHHbIe SneHbI, 

nOCKOJTbK,' paCCMaTpkiBaeTCH 3aAaVa C 6blCTpO MCHRIOUIHMHCII 803MYII,eHHRMH. kknOJIb3OBaHO 3aBw- 

CRlqee OT BpeMeHB BO3MyLUeHHe Ha BXOAe H npOBeAeHa OUeHKa er0 BJlE?HWl Ha XapaKTepHCTHKH 

IIJIeHKW H nepeHOCHble CBOtiCTBa BHW3 n0 Te'ieHUH). no-BHAHMOMy, OCHOBHbIe ypaBHeHE4 B KOnnOKa- 

IWOHHOfi +OpMe MOryT IIpeACTaBHTb HHTepeC C TOSKB 3peHHx HX UCIIOJIb30BaHHII npe HccneAoBaHsa 

nneHoK. 
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