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Abstract

Theoretical analysis of the hydrodynamic and transport characteristics at the entry region of free

surface films is presented. The governing equations for mass continuity, liquid motion and heat transfer
across the film are newly formulated in terms of the (usually measurable) parameters at the interface, by
applying the latter as a so-called collocation line. Inertia terms are retained as required in problems
associated with rapid disturbances. A time-dependent disturbance is applied at the entry and the effects of its
propagation on the film- and transfer-characteristics down-stream are evaluated and discussed.

The collocation forms of the governing equations might be of an interest for further film analyses.

NOMENCLATURE

ai,bi, constants;

d, distance from free interface [m];

I rate parameter (or frequency of disturbance
at x = 0) [1/5];

Fo, Fourier number ;

G gravitation component in x direction
(m/s?];

h, film thickness [m];

H, normalized film thickness;

Hy, final film thickness;

hy, Nusselt film thickness [m];

k, heat conductivity [W/m*(K/m);

l, liquid heat of vaporization [é/kg];

P pressure (p' = p — pg.x) [N/m?*];

Q. local volumetric flow rate;

q., wall heat flux [W/m?];

Q.. normalized wall-heat flux ;

Q.4 average normalized wall-heat flux with
respect to distance;

Q.4  average normalized wall-heat flux with

respect to distance and time;
Re, Reynolds number;
film surface velocity [m/s];
normalized film surface velocity;

%

~

time [2];
T, temperature [K];
T.. wall temperature [K];
T, film free interface temperature [K];
u, velocity in the x direction [m/s];
g, velocity in the y direction [m/s];
We, Weber number ;
X, normalized distance in the x direction :
X, maximum distance that the disturbance

advanced at time t,.

* Present address: Eindhoven University of Technology,
The Netherlands.
+ Department
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Greek symbols

a, thermal diffusivity [m?/s];

¥, local mass flow rate [kg/sm];

Vis inlet mass flow rate [kg/sm];

T, normalized mass flow rate;

0., temperature drop (T — T,) [K];
o, normalized 6, ;

i, Pohlausen’s parameter;

U, viscosity [NS/m?];

v, kinematic viscosity [m?/s];

P, density [kg/m?);

a, surface tension [N/m];

T, normalized time;

Tr, normalized time for reaching H at X = 0;
T, stress tensor [N/m?];

¥, stream function [m?/s].

L. INTRODUCTION

FLUID motion and transport in thin free-surface liquid
films are of fundamental interest in much basic in-
dustrial equipment, e.g. in steam condensers, wetted
wall columns, liquid-film evaporators and other pro-
cesses involving interfacial heat and mass transfer. Of
particular  interest are the horizontal type
evaporator--condenser systems [ 1,2], where either the
liquid condensate or the evaporating film flows be-
tween vertically neighbouring tubes by means of
falling droplets, which detach at the bottom of one
tube and ‘rain’ on the top of the tube below. Thin films
are thus sustained by successive drops and at the time-
interval between two consecutive drops, the liquid
drains downward [3].

Due to this kind of constantly undeveloped flow, the
film characteristics and the transfer rates are complex
periodical functions of time. Obviously, the film char-
acteristics (thickness of that layer which remains on
the surface and its drainage velocity) as well as the
transport characteristics are influenced most at the
under-developed region which follows the initial
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boundary where the dripping, and hence the change of
feeding rate, occurs. The contribution of this under-
developed entry region is of practical importance in
cases where the transfer areas are relatively short. For
instance, the film-drainage path on a horizontal-tube
bundle comprises consecutive sections each being half
of the conduit periphery.

Heat, mass and momentum transport for laminar
confined flows in the entrance region of closed con-
duits has received comprehensive attention [4-9].
However, the entrance region for laminar free-surface
flows has received relatively little attention. The
entrance effects on mass-transfer processes in laminar
free-surface falling liquid films have been accounted for
by Scriven [10] and Toor [11]. Laminar flow along a
vertical wall has been analysed by Hassan [12],
utilizing the integral equation of momentum and has
been improved later on by Haugen [13] assuming a
developing boundary layer at the entrance. Direct
integration of the governing differential equation (by
using finite difference methods) has been presented by
Bruley [14]. Fyrther numerical solutions of the equa-
tion of motion in the entrance region have been
reported by Cerro and Whitaker [15]. In all the above
studies, the effect of viscous drag at the interface has
been neglected. This has been accounted for later by
Murty and Saster [16].

The present study represents a theoretical analysis
of the unsteady hydrodynamic and transport charac-
teristics in thin films. Particular emphasis is made on
the effect of a time-dependent disturbance applied at
the entry region and its propagation downstream. For
instance, reduction of film thickness, velocity or feed
flow rate at the entry in a step-change mode or as a
function of time.

The equations of continuity, motion and energy for
free-interface thin films are first formulated in terms of
the free liquid-interface parameters by applying the
latter as a collocation line. The collocation equations
obtained are simultaneously solved for the instan-
taneous film thickness, velocity at its interface and the
associated transfer rates, using Lax- Wendroff numeri-
cal schemes.

2. THE PHYSICAL MODEL

A schematic description of the physical model and
coordinates are illustrated in Fig. 1. An initially plane
laminar film flows down a vertical wall emerging at x
= 0. The feed rate at x = 0 is uniformly distributed in
the z direction at the times t = 0 and it rates at y; per
unit width of the wall. However, for t > 0 the film-feed
flow rate is changed in either a stepwise or time-
dependent manner. Note that a zero gas—liquid shear
is assumed at the film free interface, denoted here by h
(x,1).

The thermal conditions are defined by either a
constant wall temperature, T, at the surface y = 0, or
a constant heat flux, ¢,, normal to this place. Theliquid
feed is distributed at an inlet temperature, T, and it is
assumed that the temperature at the film free interface
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FiG. 1. Schematic description of physical model.

is maintained constantly at T, (corresponding to a
constant saturation pressure p,).

2.1. The conditions at the gas—liquid interface

With reference to Fig. 1 the geometry of the
gas—liquid interface is given by the normal and
tangential unit vectors:

n=(—h,1)/|Vd|.
t=(L,h)/|Vd],

(la}
{1b)
where subscript x denotes derivation in the x direction

and d denotes the distance from the free interface given
by:

d(x,y,t) =y — h(x,1); !Vd'; =(1+h)H" (2

Assuming now two dimensional flow (uniformity in
the z direction) and utilizing boundary-layer approxi-
mations the film stress tensor is:

N2 N2 |
¢ l,// {
I |
TPHL S Az |
_ Tex Ty oxcy Cy ’ (3)
T T e i
vx ¥y JTe— —p — 2;1 " i
(,‘yz (’X( V i

where p is the pressure and ¥(x,y,t) is a stream
function (defined by u = &Y/dy and v = —3Y/ix).
Utilizing equations (la) and (1b), the stress vector at
the gas-liquid interface is:

o 1 i (nd/
=T = e | Phy — 2'h
f=7-a iy e P ey
02111 le// azw E
Fu—C, —p—th -t o (4
Hoar TP sy Y @)
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whereby the normal and tangential component to the
interface are:

= - - 2“
Lh=@n)-n= —P+1—;T§
%y oy >y
- — by 4 2 ,
[ aay ot ey ||, ¢
- 1-h Yy
G ey i T W
b, Py
1+ hZ 8xdy|,=4. (5b)

Following the boundary-layer approximation, all
terms of 3%ys/0xdy may be neglected and equations (5)
reduce to

_ 2hx %y

Jo= _p_ﬁ-Tﬁ 5}‘)7 y=h, (6a)
- 1—-h2 &y

F= BT 5, (6®)

2.2. The governing equations of motion

The simplified Navier-Stokes equations (known as
Prandtl’s boundary-layer equations) for two-
dimensional non-steady flow in the x — y plane are:

6u+ 6u+ du u 1dp+ )
—tU—F V=V — — —— ,
o Yox ey Va7 pax o
u oo
— 4+ —=0. 8
ax+ay ®

As it is often convenient, the stream function is
introduced, so that the continuity equation (8), is
satisfied automatically, and in addtion, the equation of
momentum is transformed into a single-unknown
third order partial-differential equation.

W oy ot oy oy 1op | Py
aay Tay axay ox F - pox T VHT

p'=p—pgx (9)

Differentiation of equation (9) with respect to y results
in the vorticity equation:

a(0*\ oy o (2%
a\&?) "oy W)

NG AR A

ax y\y? )" " o*

The prescribed stream function ¥ (x, y,t) is expanded
now at (x,t) into six powers of y, with coefficients a;

(x,t) which are functions of x and ¢, the expansion
being :

(10)

Yx,p,t) = ap+ary + azy®+asy® +azy* +asy’.

Some of the coefficients can be selected in accordance
with the appropriate boundary conditions, whereas
the others are connected through conditions of com-

929

patibility at either the wall or the liquid free surface. In
terms of the stream function, the boundary and
compatibility conditions are:

0
=0; 5‘5=0 a, =0, (11a)
y=0; =0 a, =0, (11b)
S ldp &y 1 dp’
y=0, p ax '@3’ 03—@ 'a?—'—‘ﬂ, (llc)
84
y =h; %—0 a, + Sash =0, (11d)
0%y
y= h5 a—yT = 0
a, — 34h + 6ah? + 10ash® =0, (lle)
oy
y h’ 5}7 =
2a,h — 300 + dah® + Sash* =5, (1)
_h B O*h/ox? -
y_ ’ v_a[1+(ah/ax)z]3/2 ns
P, =const. (l1g)

The first two conditions at the wall are due to the
absence of fluid slip and an impermeable solid surface.
These two combined with the momentum equation (9)
resultin a third relationship at the wall. Equation (11¢)
is a compatibility condition which results from equa-
tion (6b) for the case of no tangential shear stress at the
free interface. The fourth relationship is again a
compatibility condition which expresses the complete
time derivative of the vorticity, moving with a fluid
particle along the free-interface streamline. This ex-
pression follows from condition (11e).

Finally, equation (11f) implies that a new parameter
s is introduced, in terms of which all other coefficients
are related. Thus, the solutions of equations (11) yield :

a, = (4s + 3Ah?)/Sh,

a, = ~ (s ~ 3ih2)/5h3,
as = (s — 31h?)/25h%,

(12)

where 4, Pohlhausen’s parameter, is given by equation
(11c). However, since the external pressure P, is
constant, the pressure gradient dP/dx across the film is
equal df,/dx. The latter is evaluated by differentiating
equation (11g).

The equation of motion (9), applied at the liney = h
(so-called collocation line), now reads:

Os Js 6 12 s

o O _6 12 +6 c 0 hyx
o ax 50T SVHETS p ax| n)E |
(13)

Note that s is the local velocity at the film interface in
the direction of the main flow.
Also, the local mass flow rate can be obtained in
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terms of s by integrating the velocity profile over the
film thickness, thus:

b oy 16
Y= /)Q =p ‘(1) (_;{* d»\' =p {25 sh
gh*  oh? ¢ hy,
R - T
75v TS5 Ox | (1+hgy

where Q is the local volumetric flow rate.
2.3. The energy equation

Substituting the stream function components, equa-
tions (3) into the two-dimensional energy equations
and differentiating with respect to y yields:

T o*y oT & éT
otdy  8y* ox  oxdy oy
o T oy T oT
o Ty =y (1D)
v dxcy  éx dy ay’

Here too, T is expanded in (five) power series
5
Y by
i~ 0

and the various coefficients are determined, based on
boundary and compatibility conditions. These are:

y=0. T=T, (16a)
0T
y=0, o= —glk, (16b)
oy
é? aT
=0 g = (16¢)
0 3T *T %y T (16
=0, a—gy=_—+ 5 .
! oy adtoy oy ox )
y=h, T=T, (16e)
h or 0 16f
y=h, 570 (16f)

Note that conditions (16c) and (16d) are obtained
from the energy equation and its differentiated form,
equation (15) at the wall. The last condition results
since the free interface is a stream line whereupon the
complete time derivation is zero. Applying the re-
lationships (16a)-(16d) and (16f) on the temperature
power series yields the coefficients in terms of the
temperature and thermal flux at the wall:

1 ¢o

— - = - 'k b, =~ :

bo GW’ bl [/ 2 2% ot
5 a0, 20, 2,
b= — .. W _ ¥ W, 17
? 6oh &1 W kR (17)
10, 6,

ba= g o T

where 8, =T, — T,.

The remaining relationship, equation (16d) is now
treated whereby the LHS is evaluated utilizing the
power series of T (or 0) with equation (17) whereas its
RHS is evaluated from the power series of ¢ with

DAvVID MOALEM MARON, WOUT Z1JL and JACOB ABOUDI

equation (12). This results in a 6, (or g¢,,)} equation in
terms of the film thickness and the velocity at the free
interface:

0, (8 ,\ad,,
ey ( + i h“)'(w—u—

‘it 25 ¥ 25y cx
B 12(1( kO“,)+ h 04,
T\t T T sk o

oh? & ho. ctl,
25p Ox [ (1 + h2)3? | ax

If a constant temperature, 7', is maintained at the
solid-film interface, equation (12) reduces to:

o4, 120((
a  p

(18)

kb, .
= . 0, = const. (19)
1)

However, for the case of a constant heat flux, ¢,,, at the
wall, equation (18) reduces to:

k()w)

h

a0, (8 gh2>60w 120/
it 55 o = sale

N oh? ¢ he, |, 20)
25p ox| (1 + 3P ox )

The film-free interface is described by [x, h(x,t)] and
the time derivatives of these coordinates {0, dh/dt].
Similarly, the interface motion is described by a vector
[s, — &/0x], while the normal component to the film
interface, 7, is given by equations (1) and (2). More-
over, if there exists a heat flux, g,, at the free interface,
evaporation occurs at an amount of q,/pl, where ! is the
liquid heat of vaporization. Therefore, the normal
interface motion due to evaporation g,i/pl must be
subtraced from the interface motion in the normal
direction. The continuity condition at the free interface

is, thus:
ah) , ; a3 - :
[0, (?I]n = [s, —QY/x]yn — (;)1> . (21)

h

The flux vector at the interface is obtained from the
temperature-gradient vector at this line. Utilizing the

temperature constants, equation (17) in ¢, =
— K@T/0Y), -,
(q,,); -1 2k6,,  kh 00,
== g — T~
ol pl h 6o ct |/
’ oh 274102
1 ~+ (;) (22)
- ‘»(TAXV -

Also from equations (11) and {12) one obtains:

(5!//) 16 f ds g O©h
7F Nl M. et
Ox /,.p 25 0x 25 Ox

N

6 . ch 2 &
Doty St 23
Fag s e Y

Combining equations (22) and (23) into equation (21),
the latter becomes:
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oh
a_h+(16 +ih2>_

ot 25 25v ox
16 0s q, 20, kh &0,
T 25 ax pl  plh apl Ot

_ 9 a0 hs |OR
25u x| (1+h2)>? Jox
c & d*hjox? >
75u éx*\[1 + (6h/ox)?]*? )
It is worth noting that equation (24) can easily be
switched to an equivalent integral continuity form by

utilizing equation (14). Differentiating the latter and
substituting in equation (24) yields

oh 1 3y

2k6,,  kh 86,
— =g, - == L. (25
s (q.. >/p 25

(24)

Obviously, if the heat-transfer resistance lies in a
sublayer thinner than the liquid film no evaporation
will occur, i.e. g,i1/pl and equation (25) reduces to:
éh 1 oy
a0 + S 0, (26)
which is the usual continuity equation.

The equation of motion, equation (13) with the
continuity equation (25) or (26) determine the film
hydrodynamic behaviour. When thermal-boundary
conditions are applied, these must be solved with
temperature equation (18). The latter may be replaced
by either equation (19) or (20) for cases of constant
temperature and constant heat flux at the wall,
respectively.

2.4. The normalized governing equations
The governing equations are now normalized utiliz-
ing the following non-dimensional variables:

S =s/Uy; H = hjhy; T =y/(pUnhy)
X =x/L; © = t/(L/Uy); L = hy(We)'?
Uyhy 9ov? - Vi _ ghh
Re=——;, We=—+; =—=_—
¢ v € pg*h} Uw hy 3v
a(L/U
Qv =aulan;  ©u=0/@vh/k);  Fo ™ ;{2 ",
N
27)

where Re. W, and F, are the Reynolds, Weber and
Fourier numbers, respectively, and hy, Uy, are the film
thickness and the average velocity, respectively, of a
laminar smooth Nusselt film, corresponding to initial
feed-flow rate, y,. Similarly, gy is the heat flux which
would result for constant wall temperature, 8, = T,,
— T,, under the Nusselt assumption of a linear
temperature profile across the film of thickness hy.
Thus gy = k(T, — T,)hy, is used in normalizing
equation (19). On the other hand, for constant heat
flux g,, at the wall, equation (20) is normalised by the
temperature gradient, ®y which would result across a
Nusselt film, hy by applying gq,, (i.e. Oy = q,.hy/k).

Note also that the characteristic length L is a wave
length in the neighbourhood of the most amplified
wave. The preference of normalizing x by L rather than
hy 1s explained below. Equations (13), (19), (20) and
(25) in non-dimensionalized form are, respectively:

1:2
oS oS E (lVe) (3 _2_3_2>

2t 778X 5 Re H

+6 G d*H/eX? 13y
5 0X |[1 + (CH/8X)*/We ]3 2 )
0., 12 1 ,
3 = —Fz‘Fo<Qw—ﬁ>, (19)
00,, 8 3 ,\00, 12F, o,
7+<hs ﬁ”)ax T H <1_ H)
1 Re H é *H/6X? 00
25 (We)'? " X \[1 + (OH/0X)*/We]*? | 0X °
(209
0H or ,
g =0 (25)
The dimensionless local flow rate is, by equation (14):
16 1 ., 1 Re _,0
['=2SH + 52 H + = wa B 5%
H/OX?
/ 2 32 (14)
[T + @GHJoX)/We]

3. METHOD OF SOLUTION

To solve equations (13°), (19°), (20') and (25') we first
neglect the surface-tension effect (terms including the
third derivative of H with respect to X are dropped).
Substituting equation (14') in (25), the following set of
equations is obtained.

oS 05 6 (Wep? s
P Ler 0 22} a3
ot X 5 Re 3- H? (13%
oH 16 _6H 16 0S 3 ,oH
- [N, \u— *
7 Pt Tty tastgx =0 (25
Q. 12 1
e —H_IFO<Qw‘ﬁ), (19*)

%, (8. 3 _.\d8,
‘a?*(ﬁs H)ax

12 F, o, .
== 71—(1 —ﬁ). (20%)

The first two equations are first solved simul-
taneously; the other two can be solved using the
solution of S and H.

The first two equations are a set of non-linear
hyperbolic partial-differential equations having the
form
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Q <S > R S 0 3 (S)
ct\H)"| 16 16 L)X \H
2\5H ~—S 2—5H
_ [, We'? (3 25)
- Re \ H?
0
This system is hyperbolic system with real
eigenvalues
N 165 + 3 H?
’25 25
The initial conditions used are:
1=0, X>0;, H=10, §=15 (28a)
1
1<, X=0; H=1~-(1~-Hj)ftr,
S = 1.5H2, (28b)
1
t>-~-, X=0, H=H, (28¢)

r
where H, is the final thickness, f, is a reference time
constant, f is a rate parameter which determines the
rate of change of the feed at X = 0.%

No stable numerical solutions have been found yet
for this system in its present form, but some attempts
are still underway. A solution for a special case has
been obtained by dropping the non-homogeneous

term
W 1/2
12,0 ( 3.2
Re H?

which forms nonlinear coupling between the two
equations. The neglect of this term is reasonable for
large values of Re. Also for large f the final values of
and X are small [equation (28b)] and hence the
contribution of the non-homogeneous term in the
integration of equation (13th) is small. The solution
is obtained by first bringing the system to a con-
servation form as follows.

as o [§?
—+==|=1=0 29
& T ax ( > > (2%)
2 d
O C (064SH + 0.04H?) = (29b)
ot 0X
This system is solved numerically using the

Lax—Wendroff method which is of second order
accuracy. Intermediate values of the functions (S, H)
are calculated initially. Then the value of S, H, on the
next grid point are calculated.

If nis the time index, i is the distance index such that
t = nAt and X = iAx where Ar and Ax are the
temporal and spatial increments respectively,

S2 n
051 =
()

+ fcorresponds e.g. to the drop frequency at x = Oand 1/fis
the drainage time between successive drops.

SI{E =05(S7 + Sty ) —
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SZ)" At
(%) |+ ©o
(2/i:|Ax (302)
SZ n
SIH 13 = 0.5(S7 + 87 ,)~05{(2\
('S2>" TaAt (30b
2 jax O
and
2\n+1/2
ST =058 - [(s_)
2 i+1/2
SZ n+1i2 At
_(Az.)‘m}ﬁ‘ (30c)

Similar expressions for H are obtained from equation
(29b).

Simultaneously, other variables and functions are
calculated, including : wall temperature, ®,,; wall heat
flux, Q,,; mass flow rate, I'; average heat flux with
distance, Q ,; average heat flux with distance and time,
Qs €tc.

The temperature at the wall, ®,, is calculated from
equation (20*) using the Lax method and forward
derivative with distance for increasing stability.

QI =050, + Q1) + At(Ar — By)

where
Cwi
Ar =24 Fo(l — ~~7)

i/

(31

and
By = 0.04(8 ST + 3H!)(O7,, — OF)/Ax.

The heat flux at the wall, Q,, is calculated from
equation (19*) using a simple central derivative

nel—Qn —12F0(
At Qv _‘—>

1/2(Hf + Hi,,)and Q, = 1/2(Q%: +

(32)

where, for H =
") yields

+t— On At At /'
oitt=0", 1—6F0;1—2 +12F°fﬁ j

(1 + 6F,At/H?). (33)

The heat-transfer coefficient U in the case of con-
stant heat flux is proportional to 1/T,. In their
dimensionless values both U and T,, are initially 1,
thus

— IT.. (34)

RESULTS AND DISCUSSION
The following parameters have been studied:
1. Rey number has been varied between 100 and 600.
2. Final film thickness is chosen at either 0.5 or 0.05
of its initial value, hy; thus, H; = 0.5 or 0.05.
3. Frequency factor was varied between f = 2.5 and
20.
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A typical output of the calculated parameters is
demonstrated in Fig. 2 for intermediate values of
Reynold’s number and rate parameter, Rey = 400 and
f = 10. During the time interval, 1/f, the film thickness
at the interval point is reduced [according to equation
(28b)] to half of its initial value. Shortly after the
changeat X = 0 occurs, a relatively steep front, ending
with H = 1.0 at X = X_, is set in motion in the main
direction of flow. This liquid front advances with speed
of approximately 1.5(H?), which is the free surface
velocity corresponding to Nusselt analysis. However,
the local free liquid surface (Fig. 2b), for the drainage
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region, 0 < X < X, strongly increases with the
distance downstream (even for this part where the film
thickness is constant), finally approaching its initial
value of 1.5 at X — X_. Consequently, the local film
flow rate, Q, varies with X in a somewhat milder
manner (Fig. 2c).

The local wall temperature (obtained with constant
wall flux} and the local flux at the wall (obtained with
constant wall temperature) are illustrated in Figs. 2d
and 2e, respectively. For a constant flux at the wall, a
decrease in the film thickness yields a decrease in the
local temperature at the wall. On the other hand, for a

20 10y
4
3 60,
75
6
3 Rey = 400
f =10
| Hf =z 05
0 100
1.0
T sl
30
H 45
60, 7
Rey =400 Rey* 400
f=10 f=10
Hf =05 Hf =05
b e
6 ~To0 % - 100
20
Rey= 400
t =10 h2f
oF——=—"335— 45 60
T-15 30
Rey = 400
f =10
Hy =05
P2
I f
% 00
Dimensionless distance , X

FiG. 2. Hydrodynamic and transport characteristics for relatively slow disturbance at X = 0 (H, = 0.5).
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constant wall temperature, the reduction in the film
thickness brings about an enhanced heat flux at the
wall. It is thus of a great interest to evaluate the total
enhancement, Q,, obtained over a distance X at a
certain time, t. As 1s shown in Fig. 2f, at time 1.f(when
the film at X =0 reaches half of its initial value) the
total enhancement in the heat flux is between 25 per

centat X = 0and 15 percentat X = X_. Forashorter
plate of L. < X_ the expected enhancement is higher

than 15 per cent.

The results presented in Fig.

correspond to a

relatively slow variation of the film thicknessat X = 0.

whereby it is reduced to half of its initial thickness at

time of 1.1 (=1/10). A similar presentation is given in

20 1015
e
r'/ /
S .15 . ;S 89
39 4 . ] /’ T:75
// / /
[/ / Rey = 400
L/ t=10
i H¢ =005
Rey = 400 L/
t =10 //
Hf =0 05
a / d
o6 oo % — 100
40 \
O R
" /
J 30 as so/

o)
e}
&}

Qw

20

1.0

20 20
Rex * 400

f+10

H¢ =0.05

Q Qaa

T =15 /
e
e
b—— .30 f
¢ Ty
% oo % 00

Dimensionless distance , X

Fii;. 3. Hydrodynamic and transport characteristics for relatively fast disturbance at X = 0 (H, == 0.05).
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Fig. 3 for the case of rapidly-diminishing liquid film at
X = 0, approaching 5 per cent of its initial value at the
same period of time (1/f= 1/10). It is interesting to
note that due to the relatively thin film associated here
the effect of the solid wall is to reduce the first liquid
front near X = X, while a new one appears at almost
X — 0. This effect can be seen also in Fig. 2a where the
steep front obtained closed to X = 0 slopes more and
more with time. As is to be expected, the large
variations in the local film thickness and in the velocity
accordingly, affect the temperature or the heat flux at
the wall. For instance, at time 7, the heat flux at the
wall (for constant wall temperature) may be enhanced
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[¢] 1000
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by some 40 per cent for a plate of length L = X and are
even doubled for shorter plates.

The various physical variables, S, H, ©,,,Q,,, 0, and
Q ... are compared in Figs. 4-9 for a wide range of each
of the basic parameters Rey, 1/fand H . Note that 0,
represent instantaneous enhancement in the transfer
rate averaged over the distance X. Since the film
thickness decreases with time, this enhancement is
more and more pronounced as the disturbance at X =
0 propagates downstream. For completeness, the
averaging of @, over the time elapsed is shown in Fig.
9. Thus, Q4 represents the overall enhancement at
time 7, and over a length X.
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FIG. 4. Local and instantaneous variations of the interface velocity s for various operation conditions.
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As indicated in Figs. 4-9, the distance (X,) down-
stream, which is under the effect of the disturbance
at X = 0, increases with the Reynolds number and
decreases with the drainage rate 1/f (at X = Q).
However, the enhancement in the transfer rates re-
lative to the initial Nusselt values depend on the final
condition of the film thickness at X = 0, whether H , —
0.5 or H; — 0.05. Clearly the latter yields a greater
improvement.

Finally, it is to be noted that the heat-transfer
coefficient is proportional to Q.. in the case of constant

Davib MoOALEM MARON, WoUT ZuL and JaCOBR ABOUDI

temperature at the wall (since the interface tempera-
ture, T, is constant at the saturation value). On the
other hand, in the case of constant heat flux at the wall,
the heat-transfer coefficient is proportional to 1/0,,.
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CARACTERISTIQUES HYDRODYNAMIQUES ET DE TRANSFERT
DANS DES FILMS LAMINAIRES TOMBANTS A INTERFACE
LIBRE AVEC TRANSFERT THERMIQUE

Résumé—On présente une étude théorique des caractéristiques hydrodynamiques et de transport a la région
initiale des films & surface libre. Les équations de continuité, du mouvement du liquide, et du transfert
thermique & travers le film sont formulées de fagon nouvelle en fonction des paramétres (usuellement
mesurables) a I'interface en considérant celui-ci comme une ligne de collocation. Des termes d’inertie sont
conservés comme dans les problémes associés a des perturbations rapides. Une perturbation dépendante du
temps est appliquée a I'entrée et les effets de sa propagation sur les caractéristiques du film et du transfert en
aval sont évalués et discutés.

Ces formes collocatives des équations peuvent étre intéressantes pour des analyses ultérieures des films.

HYDRODYNAMIK UND TRANSPORTEIGENSCHAFTEN BEI FILMEN MIT
FREIER OBERFLACHE BEI ZEITABHANGIGEN STORUNGEN
AM EINTRITT

Zusammenfassung—Es werden theoretische Berechnungen der Hydrodynamik und der Transporteigen-
schaften im Einlaufbereich von Filmen mit freier Oberfliche mitgeteilt. Die Bestimmungsgleichungen fiir
Massenkontinuitit, Fliissigkeitsbewegung und Wéarmetransport durch den Film werden neu formuliert, und
zwar mit den (gewohnlich meBbaren) Parametern an der Grenzfliche als unabhédngigen Variablen. Dabei
wird letztere als sogenannte Kollokationslinie angesetzt. Trigheitsglieder wurden beriicksichtigt, so wie es
fiir Aufgabenstellungen mit schnellen St6rungen gefordert wird. Es wird eine zeitabhiingige Storung am
Eintritt angesetzt und der EinfluB ihrer Fortpflanzung auf die Film- und Transporteigenschaften
stromabwirts abgeschitzt und diskutiert. Die Kollokationsformen der Bestimmungsgleichungen kénnen
fiir weitere Filmberechnungen von Interesse sein.

BJIMAHUE 3ABUCSIIErO OT BPEMEHHW BO3MVYHIEHUS BO BXOJHOW OBJIACTH
HA T'MIPOAUHAMHUUECKHUE XAPAKTEPUCTUKH U [TEPEHOCHBIE CBOMICTBA
CBOBOJHON TJIEHKH HA NMOBEPXHOCTH PA3[EJIA

Asnnotauns — [IpencTaBiieH TeOPeTHYECKHH aHAIH3 THAPOIHHAMHAYECKHX XaPAKTEPUCTHK H IEPEHOCHBIX
CBOMCTB Ha HAYAJBLHOM y4aCTKe IJIEHOK CO CBOGOAHOI moBepXxHOCThbI0. OCHOBHBIE ypaBHEHHS COXpa-
HEHHS MAcChl, KOJIHYECTBA BHXCHHs XHIKOCTH M TEPEHOCA TeNJa MONEPeK IJIEHKH BbIPaXEHLI Yepes
(o6BMHO H3MeEpSeMBie) TapaMeTPhl Ha I'PaHHLE pa3fena, IPHYEM [OCIEAHAs PEACTABEHA B BHIE TaK
Ha3biBa€MO# KOJUIOKAIIHOHHOH JIHHHM. B ypaBHEHMsX mnepeHoca COXpaHEHbl HHEDIHOHHBIC HJICHBI,
MOCKOJIBKY PacCMaTPHBAETCH 3alava ¢ ObICTPO MEHAIOWMMHCS BO3MYyLeHuamH. Mcnonbiosano 3aBH-
Cslllee OT BPEMEHH BO3MYILUEHME Ha BXOJE H NMPOBENCHA OLEHKA €r0 BIMAHMA Ha XapaKTEPHCTHKH
IJIEHKH M NIEPEHOCHBIE CBOHCTBA BHU3 1O TeUeHHIO. [To-BHAHMOMY, OCHOBHBIE YDaBHEHHS B KOJJIOKA-
LHHOHHOA popMe MOTYT NPEACTABHTL HHTEPEC C TOUKH 3PEHHs UX UCHOJIL3OBAHMS MPH HCCIICAOBAHHH
IJICHOK.
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